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Abstract

In this paper, we propose a novel approach for electron paramagnetic resonance (EPR) mixture spectra analysis based on blind

source separation (BSS) technique. EPR spectrum of a free radical is often superimposed by overlapping spectra of other species. It

is important and challenging to accurately identify and quantify the �pure� spectra from such mixtures. In this study, an automated

BSS method implementing independent component analysis is used to extract the components from mixed EPR spectra that contain

overlapping components of different paramagnetic centers. To apply this method, there is no requirement to know the component

spectra or the number of components in advance. The method is applied to analyze free radical EPR spectra which are collected

from standard chemical system, cultured cell suspense, and ex vivo rat kidneys by spin trapping EPR technique. Results show that

the BSS method proposed here is capable of identifying the component EPR spectra from mixtures with unknown compositions.

The BSS technique can offer powerful aids in resolving spectral overlapping problems in general EPR spectroscopy analysis.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Electron paramagnetic resonance; Spectroscopy analysis; Blind source separation; Free radical; Independent component analysis
1. Introduction

Electron paramagnetic resonance (EPR) spectroscopy

is a technique to detect the presence of unpaired electrons

in biological samples. It has distinct advantage in many

medical applications, especially for the direct measure-
ment of free radicals which hold unpaired electrons [1], as

free radicals play an important role inmany physiological

and pathophysiological pathways [2–4]. The detection of

organic free radicals is difficult because of their low con-

centration and exceptionally short half-life properties.

Furthermore, in many practical cases, it is common that

more than one kind of free radical are involved in the EPR

detection and hence the detected signal may be composed
of a number of overlapping spectra, which gives rise to

difficulty in quantitative analysis of the signal [5,6].

As free radicals are too highly reactive to detect di-

rectly, the spin trapping technique has been developed

since the late 1960s [7–9], and has made remarkable

contributions to identify various free radicals over de-

cades of development [10–12]. The above stated diffi-
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culty has hence been mitigated by spin trapping

techniques, but not eliminated. For example, the spin

trap agent 5-(diethoxyphosphoryl)-5-methyl-1-pyrro-

line-N-oxide (DEPMPO) has been widely used to trap

superoxide (O��

2 ) radical in biological systems. However,

DEPMPO simultaneously traps hydroxyl radical (OH�)
in in vivo systems. The measured spectrum of superox-

ide–DEPMPO adduct is thus often superimposed on the

spectrum of the hydroxyl–DEPMPO adduct. A similar

problem also exists in nitric oxide (NO) measurement by

spin trapping EPR spectroscopy, where the copper-ad-

duct spectrum may contaminate the signal of the NO-

adduct [13].

To identify pure spectra of free radicals from their
mixtures measured by spin trapping EPR technique,

traditional method usually proceeds by manually

matching the mixtures with the reference spectra. This

effort is apparently inefficient and highly dependent on

the content of the reference spectra. Another approach

was reported to determine the paramagnetic species

from mixtures by determining the power saturation be-

havior of different spectral features [14]. However it is
only applicable for limited species and a multitude of

demanding experiments are required. Consequently, it is
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desirable to develop a simple and generic method, which
is not dependent on the reference spectra, for most EPR

mixture spectra analysis. It is ideal if we can obtain pure

component spectra from bulk spectra mixture numeri-

cally, though it has been proven challenging in EPR

signal analysis [15]. To solve the problem, Steinbock

et al. [16] have proposed an approach using principal

component analysis (PCA), which has many applica-

tions in spectroscopy analysis such as in [17], combined
with the self-modeling method or a method exploiting

the symmetric feature of EPR spectra. The complexity

of this approach, however, remarkably increases with

the increase of the total number of components.

In this study, we introduce a blind source separation

(BSS) method based on independent component analy-

sis (ICA) to EPR spectra separation. BSS has found

applications in many practical problems such as speech
recognition [18], EEG analysis [19,20], functional mag-

netic resonance imaging (fMRI) [21], and NMR spec-

troscopy [22]. In this paper, the novel application of BSS

method to EPR spectral analysis is proposed. Via the

BSS method, we can estimate the source components

from mixed EPR spectra even without the prior

knowledge of the source components. That is, if a suf-

ficient number of mixture spectra are recorded over a
magnetic field interval, we can separate the components

without knowing the source component spectra and the

number of components in advance.

Using this species free method, we attempted to

identify the pure sources from the observed overlapping

EPR spectral mixtures as well as to estimate the per-

centages of the pure components contained in the mix-

tures. To test the validity of this method, references were
chosen to be the well-characterized spectra of superox-

ide–DEPMPO and hydroxyl–DEPMPO adducts, which

were produced from standard chemical systems. The

simulated overlapping spectra were employed for mix-

ture spectra separation. Also, we applied the proposed

technique to analyze biological EPR spectra containing

two and three kinds of overlapped signals, respectively.
2. Blind source separation of free radical EPR spectra

2.1. Mathematical model for blind source separation

method

Blind source separation can be illustrated as in Fig. 1.

We have access only to the mixtures xðnÞ ¼ ½ x1
Fig. 1. The model of blind sou
ðnÞx2ðnÞ � � � xM ðnÞ�T, which is assumed to be generated
from a linear instantaneous mixing system as

xðnÞ ¼ AsðnÞ ¼

a11 a12 � � � a1N
a21 a22 � � � a2N
..
. ..

. . .
. ..

.

aM1 aM2 � � � aMN

2
6664

3
7775

s1ðnÞ
s2ðnÞ
..
.

sNðnÞ

2
6664

3
7775; ð1Þ

where A is often defined as the mixing matrix, and sðnÞ
are the source signals. This in fact means that, in the

BSS model for EPR spectra analysis, the observed

spectrum is assumed to be a linear superposition of the
source components according to the principle of super-

position. Our aim is to extract the source signals sðnÞ
from the mixtures xðnÞ, the only known data. This is

equivalent to estimate a separating matrix B, so that

yðnÞ ¼ BxðnÞ ¼
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where P is a permutation matrix that has one and only

one non-zero element in each row and column. That is,
the estimated vector signal yðnÞ contains a scaled form

of all the original source signals with an undetermined

order.

Further statistical assumption on the source signals is

necessary to make the blind source separation problem

solvable. The number of observed mixture signals

should not be less than the number of source signals, i.e.,

M PN in Eq. (1). If the statistical distributions of the
sources are non-Gaussian (or at most one source is

Gaussian) and mutually independent, ICA is a solution

[23,24]. In another case where the sources are mutually

and temporally uncorrelated, uncorrelated component

analysis (UCA) is an alternative solution [25]. There are

several algorithms in the literature to implement ICA

[23,26] and UCA [25,27]. In our study, we use an algo-

rithm called FastICA [26] to implement ICA. A pro-
gram about this algorithm is also provided by Hurri et

al. [28]. The program is implemented in MATLAB

programming language.

In the FastICA method, the problem of estimating B

is solved by maximizing the non-Gaussianity of BTx to
rce separation method.



Fig. 2. (A) Typical EPR spectrum of O��

2 adduct with DEPMPO of

xanthine/xanthine oxidase chemical system. (B) Typical ERP spectrum

of OH� adduct with DEPMPO of Fenton reaction system. (C,D) EPR

signals of DEMPO adducts of Chinese hamster ovary cells with dif-

ferent processings. All signals of DEPMPO spin adduct were recorded

with Bruker EMX EPR spectrometer. Representative spectroscopic

parameters were: center field 3484G, microwave frequency 9.76GHz,

microwave power 20mW, modulation frequency 100 kHz, modulation

amplitude 2G, time constant 10ms.
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give a good approximation of B [26]. Based on this
theory, the negentropy approximation function

JðBTxÞ / ½EfGðBTxÞg � EfGðvÞg�2 ð3Þ
is used to construct a measure of non-Gaussianity, i.e.,

objective function for ICA estimation, where E is the

expectation function, G is practically any non-quadratic

function, and v is a Gaussian variable of zero mean and
unit variance. By choosing G properly, one can obtain a

suitable approximation of negentropy for a specific ap-

plication. There are three forms of optimal G function in

terms of asymptotic variance, robustness, and consis-

tency in FastICA:

G1ðuÞ ¼
1

a1
log coshða1uÞ; ð4Þ

G2ðuÞ ¼ � 1

a2
expð�a2u2=2Þ; ð5Þ

G3ðuÞ ¼
1

4
u4; ð6Þ

where 16 a1 6 2, a2 � 1 are constants. When the prob-

ability densities of the source data to be estimated are

super-Gaussian (i.e., a density of positive kurtosis, in-

dicating a relatively more peaked distribution than

Gaussian), both G1 and G2 are suitable choices. Espe-

cially when the sources are highly super-Gaussian, or

when robustness is very important, G2 may be better.
When the independent source components are sub-

Gaussian (i.e., negative kurtosis density, with a rela-

tively flat distribution), G3 should be chosen.

2.2. Real problem of free radical EPR spectra and

assumptions for BSS method

2.2.1. EPR spectra of superoxide and hydroxyl radical

adduct

The typical EPR spectra of O��

2 and OH� are shown in

Figs. 2A and B in first derivative absorbance form, de-

tected from standard chemical solution systems, and

trapped by DEPMPO (see Section 5). Both spectra are

basically octet lineshapes, but the detailed hyperfine

structures are different due to the different nucleus–

electron interactions. The resonance fields for both
spectra are from 3420 to 3520G at the frequency of

about 9.75GHz. In practical EPR detection of endoge-

nous O��

2 from Chinese hamster ovary (CHO) cell sus-

pension (see Section 5), the spectra signals (Figs. 2C and

D), however, are usually the combination of O��

2 and

OH� spectra embedded in high level noise. The corrup-

tion of the signals is mainly due to the fact that O��

2 and

OH� commonly coexist in cells and can both be trapped
by DEPMPO. Peaks of both components in the spectra

are heavily overlapped with each other leading to dis-

torted component spectra. The individual components

are thus difficult to identify and quantify. Therefore
there is a need to employ BSS method to accurately and

automatically separate and identify the components

from the mixture spectra.

2.2.2. Assumptions for BSS analysis

In our BSS framework for free radical spectra anal-

ysis, we assume that several measurements of the free

radical spectra can be obtained, with each measurement

being a distinct linear superposition of the individual

free radical spectrum. The assumption of linear super-

position can be satisfied if no significant interactions

occur between the free radicals (superoxide–DEPMPO
and hydroxyl–DEPMPO adducts in our above exam-
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ple), since this ensures that the individual EPR spectra
are independently produced and hence the measured

mixture spectrum is a simple linear superposition of the

component spectra. By distinct superposition we mean

that the ratios of these individual source spectra in one

measurement are different from those in each other

measurement. This can be automatically satisfied since,

in most biological samples, different free radicals are

present in different concentrations as well as their EPR
signals increase or decay at different rates, which leads

to variations in the component ratios in the recorded

mixture spectra. It is not excluded, nevertheless, that in

some cases a few components appear with constant

proportion in all mixture spectra within a certain small

error so that they may be estimated as one ‘‘pure’’

component. The number of measurements should be no

less than the number of free radicals that can be mea-
sured. We further assume that the source radical spectra

are statistically independent of each other and their

statistical distributions are non-Gaussian. In practice,

the assumption of statistical independence usually can-

not be perfectly satisfied. However, approximate inde-

pendence exists if the source free radical spectra are not

overlapped or have one or more well separated lines.

The ICA for the superimposed spectra can then give
good estimates of source spectra for most of these cases.

The non-Gaussian assumption means that the spectra

data in our experiment should have a statistical distri-

bution deviating from Gaussian (i.e., normal) distribu-

tion. The more deviation, the better separating results.

Numerical analysis of the superoxide–DEPMPO spec-

trum and hydroxyl–DEPMPO spectrum shows that they

are both non-Gaussian, more specifically, super-Gauss-
ian as shown in Fig. 3. For super-Gaussian sources, we

can use G1 or G2 in the FastICA algorithm. Analysis of
Fig. 3. Probability density estimate of DEPMPO–OH spectral data

(dotted line) and DEPNPO–OOH spectral data (solid line), compared

with Gaussian distribution (dashed line).
other typical free radical spectra shows that most of
them are statistically super-Gaussian.
3. Results and discussions

The proposed BSS technique has been successfully

tested in the simulated mixture spectra and applied to

the spectra of biological samples. Here we show the
results for simulations and two biological examples: (i)

mixture spectra of superoxide and hydroxyl radicals of

cellular systems and (ii) mixture spectra containing nitric

oxide component which were obtained from ex vivo rat

kidneys.

3.1. Blind source separation of simulated mixture spectra

of superoxide and hydroxyl radical adducts

Experimental first-derivative lines of EPR spectra

were directly employed for analysis. All the signal in-

tensities were digitalized to 1024 equidistant points for

further processing, and each spectrum was regarded as a

1024-dimensional vector. The spectra of superoxide–

DEPMPO and hydroxyl–DEPMPO measured from

chemical system are used as reference spectra. Overlap-
ping complex spectra are simulated by mixing the ref-

erence spectra. By setting the mixing matrix with

different values, a number of mixture spectra with dif-

ferent O��

2 /OH� ratios are acquired. Distinct superposi-

tion, required by our BSS approach, is thereby satisfied

in the simulation.

Assuming the number of unknown components to be

estimated is 2, which leads to the choice of �2� for the
parameter �numOfIC� in the FastICA program [28]. The

number of mixtures provided for estimation is also 2

under the constraint M PN as stated in Section 2.1.

Sufficient number of combinations of two mixture

spectra, containing overlapping components in different

proportions, are formed for BSS application. One

combination of the simulated mixture spectra for anal-

ysis is presented in Figs. 4A and B. Through estimating
the probability density of pure superoxide–DEPMPO

and hydroxyl–DEPMPO spectral data (Fig. 3), and

computing kurtosis, one can find that both spectra

samples have super-Gaussian statistical distribution.

Therefore we choose G1 to perform this method (refer to

the mathematical model section). The parameter g (the

derivative of G function) in the FastICA program is

thereby set as �tanh.� The parameters a1 and a2 are set as
�1� in our implementation. After several iterations in

implementing FastICA, the separating matrix B is

quickly estimated, and thus two pure spectra are sepa-

rated from the mixtures. The reconstructed source

spectra are illustrated in Figs. 4C and D in solid lines.

When one compares them with the dotted lines that

represent the reference spectra, one can find only slight



Fig. 4. (A,B) EPR signals of simulated mixture with signal amplitude

ratios of O��

2 /OH� equal to 1/1 (A) and 1/1.75 (B), respectively. (C,D,

solid lines) Retrieved source spectra from signals in (A,B) using BSS

method with FastICA algorithm; (C,D, dotted lines) reference spectra

of DEPMPO spin adducts of O��

2 and OH�.
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differences exist between the reconstructed spectra and

the references.

To test the validity and stability of the suggested

method for separating mixtures with various O��

2 /OH�
Table 1

Signal amplitude ratios of O��

2 /OH� for different combinations of mixture sp

Group No. 1 2 3 4

Mixture 1 1/1 1/1 1/1 1/1

Mixture 2 1/1.1 1/1.5 1/1.75 1/3

Table 2

SDI between separated spectra and reference spectra after blind source sepa

Group No. 1 2 3 4

O��

2 0.0388 0.0379 0.0407 0.0370

OH� 0.0027 0.0029 0.0022 0.0036
ratios, we randomly set eight combinations of mixture
spectra containing different proportions of O��

2 /OH� as

shown in Table 1. After BSS application to each com-

bination of mixture spectra, two source spectra were

retrieved in each combination. Since the mixture spectra

in each combination are combined of same sources of

superoxide and hydroxyl adducts, the mathematically

separated two spectra are expected to be same for each

combination, and exhibit only the spectral lineshapes of
superoxide–DEPMPO and hydroxyl–DEPMPO. In

fact, it is the case for the practical application of BSS

method to all combinations, as results show that the two

separated spectra in each combination closely resemble

the corresponding reference spectra.

The degree of similarity between theoretically re-

trieved spectra and reference spectra for each combi-

nation is measured by signal distortion index (SDI) as
shown in Table 2. The SDI is defined as

SDI ¼ E½ðr� yÞ2�=ðE½r2� þ E½y2�Þ; ð7Þ
where E is the expectation function, y is the output of

BSS, and r is the reference signal. The mean signal dis-

tortion index is 3.85% for superoxide–DEPMPO spec-

trum, and 0.26% for hydroxyl–DEPMPO spectrum. The
signal distortion indexes are larger than 0 because the

original spectra of superoxide–DEPMPO and hydroxyl–

DEPMPO are not completely independent. Since the

objective of ICA is to find the components as indepen-

dent to each other as possible, but it is nearly impossible

for the practical source components to be strictly sta-

tistically independent, there must be errors for the esti-

mation. The more independent are the components, the
more precise is the estimation. If the components are

highly correlated, e.g., most peaks of one component are

blurred by the peaks of other components, ICA method

will not work well. In addition, the shape of the com-

ponent spectrum is also important to the separation.

Generally, spectra with sharp peaks tend to be well es-

timated like this example, since they tend to have quite

peaked super-Gaussian distributions. When the spectral
peaks are very broad and cause their distributions close

to Gaussian, the estimate of the components, however,
ectra

5 6 7 8

1/1 3/1 3/1 3/1

1/4 1/3 1/1.75 1/4

ration of the simulated mixture spectra

5 6 7 8 Average

0.0381 0.0392 0.0350 0.0413 0.0385

0.0029 0.0021 0.0029 0.0018 0.0026



Table 3

Signal amplitude percentage (%) of true and estimated signals and their percentage difference for each simulated mixture spectra

Mixture No. 1 2 3 4 5 6 7 8 Average

True

O��

2 50 47.6 40 36.4 25 20 75 66.7 –

OH� 50 52.4 60 63.6 75 80 25 33.3 –

Estimated by BSS

O��

2 47.3 45.2 36.8 32.6 22.9 18.6 71.3 63.7 –

OH� 52.7 54.8 63.2 67.4 77.1 81.4 28.7 36.3 –

Percentage difference 2.7 2.4 3.2 3.8 2.1 1.4 3.7 3.0 2.8
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will not be very satisfied. Nevertheless, the high consis-

tence between reference and separated spectra shown by

above data strongly indicates that the DEPMPO adduct

spectra of superoxide and hydroxyl can be separated

and reconstructed efficiently by BSS from their mixture

signals.

The proposed method not only reveals the source

spectra from the bulk mixture, it also allows us to
conveniently estimate the percentages of hydroxyl radi-

cal and superoxide contained in the detected signals,

which provides important aids in quantification analysis

of free radical generation. The estimated amplitude

percentage of each component in the mixture signal

using this method is presented in Table 3. From these

data one can find that, for each radical species, the

difference between the true and the estimated percentage
is only 2.8% on average, which suggests that the com-

ponent percentages estimated using the method can be

regarded as reliable information within a small error. As

for the source of the error, it may mostly come from the

fact that the statistical distributions of the two compo-

nent spectra are not entirely independent with each

other.

3.2. Application to EPR spectra obtained from biological

samples

The procedures can be summarized as follows:

(a) EPR detection (usually use spin traps for measuring

free radicals) of biological samples to obtain spectral

data.

(b) Data alignment as preprocessing of data.
(c) Noise reduction of spectral signals.

(d) Implementation of blind source separation method

to identify source spectra and estimate the propor-

tion of the components.

Some parts that have not been previously stated will

be highlighted as follows.

3.2.1. Data alignment

In EPR measurement, because microwave frequencies

may be different among different recordings even for

repeated measurements of the same paramagnetic cen-
ters, the spectra will shift with each other to some extent.

Although the shift may not be significant, it severely

hampers the mixture analysis. To cope with this prob-

lem, we compare each set of data using correlation

analysis method. Since the mixture spectra in our anal-

ysis are combined of same components, the mixtures

must have similar spectral features; thus they should be

mostly correlated when they do not shift with each
other. We first choose a signal as reference, then com-

pute the correlation coefficient between the reference

and each other spectrum, and finally move the spectrum

vector of interest along the magnetic field axis to the

place where the correlation coefficient value is the

highest. Thereby the spectral shift factor can be elimi-

nated through this preprocessing.

3.2.2. Application to real example: noise reduction and

blind separation of overlapping spectra of cellular systems

In practical situations, it is common that EPR signals

of biological samples suffer from the problem of very low

signal-to-noise ratio (SNR) and baseline distortion

which might be due to the instability of detecting con-

dition during slow scan. Some filtering techniques, such

as adaptive filtering [29,30], were applied to reduce noise
for better performance of BSS. When a reference and a

primary signal are fed into the filter, the adaptive filter

compares the primary signal with the reference, and ad-

justs its own parameters until finally gives a minimum

mean-square error estimate of the pure signal of interest

that is contained in the primary noisy signal. In our im-

plementation of filtering the primary noisy signals of

CHO cells as shown in Figs. 5A and B, we employed the
reference signals by averaging a set of similarly measured

spectral signals. Figs. 5C and D illustrate the outputs of

our adaptive filter. Then, the preprocessed mixture

spectra underwent the processing of FastICA method,

where the G function and other inputs of the imple-

mentation were chosen the same as in the simulation. The

finally separated spectra are presented in Figs. 5E and F,

solid lines. One can find that their peaks are quite dis-
cernible, and closely resemble the dotted lines in Figs. 5E

and F that describe the corresponding reference spectra

of superoxide–DEPMPO and hydroxyl–DEPMPO.



Fig. 5. (A,B) EPR signals of DEMPO adducts obtained from CHO cellular systems. The detecting conditions are as in Fig. 2. (C,D) Mixture signals

filtered from noise corrupted signals in (A,B) using adaptive filtering method. (E,F, solid lines) Estimated source component spectra from mixtures in

(C,D) using BSS method; (E,F, dotted lines) reference spectra of DEPMPO spin adduct of O��

2 and OH�.
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In addition, in our simulation test with Gaussian

noise added and using adaptive filtering technique for

preprocessing, it has been found that the effectiveness of

our BSS method increases with the elevation of SNR of

primary mixture signals. When the SNR of primary

mixture signal is set to 3, the distortion index between

the separated O��

2 signal and its reference can reach as

small as 0.25, and the value is even smaller for OH�

signal.

3.2.3. Demonstration of real example: identification of

nitric oxide signal obtained from ex vivo rat kidneys

Spin trapping EPR spectroscopy is widely employed

for unequivocal detection of NO in living systems, where

DETC is used for trapping NO to form a stable adduct

DETC2–Fe
2þ–NO. Forasmuch as the major problem

due to superposition of manifold components also ap-

pears here, we have attempted to use BSS to estimate

biological NO EPR signal. Figs. 6A–C exhibit the ex

vivo EPR spectra detected from three rat kidneys that

receive intraperitoneal injections of DETC 30min be-

fore sacrifice (see Section 5). Because of the low con-

centration of NO, there is an increase in the binding of

DETC to copper and a few other sources such as re-
duced iron–sulfur proteins, which results in complex

background signal superimposed with NO EPR signal

[13,31,32]. Therefore, the EPR signals of DETC2–Fe
2þ–

NO present only doublet lines in Figs. 6A–C.

Since we can regard several components present in

constant proportion as one ‘‘pure’’ component during
BSS estimation, we assume there are three unknown

components to be estimated, hence at least three de-

tected mixture spectra with various component pro-

portions should be provided for separation by BSS

under the constraint M PN , as stated in Section 2.1.

Considering the components are unknown in the mix-

ture signal and the statistical distributions of most free

radical spectra are super-Gaussian, the function
G1ðuÞ ¼ 1=a1log coshða1uÞ is employed for this case.

After the application of BSS to the mixture signals in

Figs. 6A–C, the estimated component spectra are shown

in Figs. 6D–F. Fig. 6D presents typical triplet lines

which are the well-known characteristic spectrum of

DETC2–Fe
2þ–NO. It reveals that, in the original re-

corded mixture signals, the pure spectrum of DETC2–

Fe2þ–NO was partially masked by Cu2þ–DETC signal.
The presence of the spectrum in Fig. 6E is mainly due to

the contribution of Cu2þ–DETC and reduced iron–sul-

fur proteins according to the computations of their g
value. The fact that the spectra of the two components

present together in this separated signal, suggests they

are estimated as ‘‘one’’ compound by BSS method. It

thereby indicates that the both compounds might ap-

pear in close concentration proportions in the kidney
samples which are used for measurements. In Fig. 6F

there is only noise remained because no other typical

spectral lines can be figured out by BSS. After this

procedure, the double integration of DETC2–Fe
2þ–NO

spectra also becomes possible and allows a quantitative

determination of DETC2–Fe
2þ–NO spectra in living



Fig. 6. (A–C) Typical EPR spectra of DETC spin adducts recorded from rat kidneys with different NO concentrations in the three figures. Two spin

trapping agents, DETC, intraperitoneally, and iron citrate, subcutaneously, were administered to the rats 30min before laparotomy. Signals were

recorded at 77K on a Bruker EPR 300E spectrometer operating at X-band with a microwave frequency about 9.45GHz, 1.0mW microwave power,

and modulation amplitude of 5.19G. (D,E,F) Retrieved source signals from the three observed spectral data in (A,B,C) using BSS method with

FastICA algorithm. Especially, the spectrum in (D) closely resembles characteristic DETC2–Fe
2þ–NO signal, while the spectrum in (E) seems to be

the combination of Cu2þ–DETC and reduced iron–sulfur proteins signals, only noise remains in (F).
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animals even with abundant copper and other metal

contents.
4. Conclusion

In this paper we present a study on evaluating the

analytical potential of the BSS technique in EPR

spectroscopy, since the phenomenon of spectral su-

perposition of multiple components appears in many
realistic spectra, leading to a major problem in analy-

sis. A BSS method based on independent component

analysis has been developed free of the features of the

detected compounds (metals, free radicals, and so on).

The merit of this method is that we can apply it even

without knowledge of the source component signal and

the way of mixing in advance. Using BSS, we can

conveniently estimate the source spectra and their
percentages in the total signal from a set of observed

mixture spectra. To make the BSS based on ICA work

well, there are constraints for the components such as

the non-Gaussian distribution and the independence

between them, though it does not require that the

constraints be very strict. On the basis of the good

agreement between different kinds of experimentally

observed and theoretically retrieved spectra in our
demonstration, we conclude that in the general EPR

cases where the spectra are overlapped, the availability
of a technique such as the one introduced here could

be an important aid.
5. Experimental

5.1. Materials

Ham�s F-12 medium and penicillin–streptomycin

were purchased from Cellgro while fetal bovine serum
(FBS) was bought from Gibco Life Technologies. Spin

trapping reagent DEPMPO was purchased from Oxis

International. Other chemicals were purchased from

Sigma Chemical unless otherwise stated.

5.2. Standard chemical systems and generation of super-

oxide and hydroxyl radicals

Xanthine/xanthine oxidase system (Eq. (8)) to gen-

erate superoxide and Fenton reaction system (Eq. (9)) to

generate hydroxyl radical were employed [33]

XanthineþH2Oþ 2O2 ! uric acidþ 2O��

2 þ 2Hþ ð8Þ

Fe2þ þH2O2 ! Fe3þ þOH� þOH� ð9Þ

The chemical system for O��

2 production is composed

with 0.32mM xanthine, 9� 10�3 unit/ml of xanthine

oxidase, and 20mM of DEPMPO in 1� PBS solution at



90 J.Y. Ren et al. / Journal of Magnetic Resonance 166 (2004) 82–91
pH 7.4. The reaction system for OH� production consists
of 0.18mM hydrogen peroxide, 0.09mM FeCl2 and

20mM DEPMPO.

5.3. Cell culture and generation of superoxide and

hydroxyl radicals

CHO cells were obtained originally from ATCC. The

cells were grown as monolayers in Ham�s F-12 medium
supplemented with 10% fetal bovine serum (v/v) and 1%

penicillin–streptomycin. The cells were cultured at 37 �C
in an incubator supplemented with 95% air and 5% CO2.

A redox cycling reagent menadione sodium bisulfite

(MSB) was introduced into the cultured media because

of its solubility in water and its metabolism to semi-

quinone, yielding the parent quinone and superoxide,

which may lead to the formation of other reactive oxy-
gen species such as hydroxyl radicals and singlet oxygen

[34]. As much as 50 lmol/L of MSB was used to induce

the production of ROS in the CHO cells.

5.4. EPR spectroscopy and spin trapping of superoxide

and hydroxyl radicals

For EPR spin trapping experiments, wild type CHO
cells at a concentration of 5� 106 cells/ml were incu-

bated with 20mM DEPMPO, 10% dextran, and

50 lmol/L menadione. The cell suspension was imme-

diately drawn into a gas permeable Teflon tube and put

into EPR cavity. The spectra of DEPMPO spin adduct

were recorded with Bruker EMX EPR spectrometer.

Representative spectroscopic parameters were: center

field 3484G, microwave frequency 9.76GHz, micro-
wave power 20mW, modulation frequency 100 kHz,

modulation amplitude 2G, and time constant 10ms.

The spectrometer was interfaced with WinEPR for data

acquisition in EPR experiments and handling of the

spectra.

5.5. Measurement of nitric oxide radical in rats kidneys

Organic nitric oxide (NO) was also detected by spin

trapping EPR method. Thirty minutes before the sacri-

fice, spin trap diethyldithiocarbamate (DETC) (Aldrich)

500mg/kg were injected intraperitoneally, ferrous sul-

phate 50mg/kg and sodium citrate 250mg/kg were in-

troduced subcutaneously at the same time. After

laparotomy, left nephrotomy was performed and kidney

tissue was carefully cut into small cylinders. Then the
tissue was immediately put into EPR flat tube and

placed in liquid nitrogen for EPR detection. Measure-

ments were performed with an ESP 300E spectrometer

(Bruker) operating at X-band, 77K, microwave fre-

quency about 9.75GHz, magnetic field range from 3000

to 3400G, microwave power 1.0mW, and modulation

amplitude of 5.19G.
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